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Problem One: Constructors and Destructors

The ordering is as follows:

• A constructor is called when elem is declared in main.

• A constructor is then called to set toPrint equal to a copy of elem.

• A constructor is then called to initialize the temp variable in printStack.

• When printStack exits, a destructor is called to clean up the temp variable.

• Also when printStack exits, a destructor is called to clean up the toPrint variable.

• When main exits, a destructor is called to clean up the elem variable.

Problem Two: Writing Destructors

The destructor is called for an IntStack when that object is being destroyed.  After the destructor fin-
ishes running, nothing in the program will ever be able to access that object again.  Accordingly, there's 
no reason to change the variables, because no one will ever be able to read their values.

Problem Three: Pointer Traces!

The output of the program is

0: 137, 0 
1: 137, 10 
2: 137, 20 
3: 137, 30 
4: 137, 40 
0: 137, 0 
1: 137, 10 
2: 137, 20 
3: 137, 30 
4: 137, 40 
0: 137, 0 
1: 137, 10 
2: 137, 20 
3: 137, 30 
4: 137, 40 

Remember that when passing a pointer to a function, the pointer is passed by value!  This means that 
you can change the contents of the array being pointed at, because those elements aren't copied when 
the function is called.  On the other hand, if you change which array is pointed at, the change does not 
persist outside the function because you have only changed the copy of the pointer, not the original 
pointer itself.
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Problem Four: new[] and delete[]
int main() { 
 int* baratheon = new int[3]; 
 int* targaryen = new int[5]; 

 
 baratheon = targaryen; 
 targaryen = baratheon; 

 
 delete[] baratheon; 
 delete[] targareon; 
} 

int main() { 
 int* stark     = new int[6]; 
 int* lannister = new int[3]; 

 
 delete[] stark; 
 stark = lannister; 

 
 delete[] stark; 
} 

int main() { 
 int* tyrell = new int[137]; 
 int* arryn  = tyrell; 

 
 delete[] tyrell; 
 delete[] arryn; 
}

The first piece of code has two errors in it.  First, the line

    baratheon = targaryen; 

causes a memory leak, because there is no longer a way to deallocate the array of three elements alloc-
ated in the first line.  Second, since both baratheon and targareon point to the same array, the last two 
lines will cause an error.

The second piece of code is perfectly fine.  Even though we execute

    delete[] stark; 

twice, the array referred to each time is different.  Remember that you delete arrays, not pointers.

Finally, the last piece of code has a double-delete in it, because the pointers referred to in the last two 
lines point to the same array.
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